Friss tételek
Bejegyzések relevancia szerint rendezve a(z) "fizika" lekérdezésre. Rendezés dátum szerint Az összes bejegyzés megjelenítése
Bejegyzések relevancia szerint rendezve a(z) "fizika" lekérdezésre. Rendezés dátum szerint Az összes bejegyzés megjelenítése

Fizika érettségi vizsga tétel 2010 - Az anyag kettős természete

Fizika érettségi vizsga tétel 2010 - Az anyag kettős természete
A fény hullámtermészetét az interferencia, fényelhajlás, és a polarizáció jelensége bizonyítja (hulámtulajdonságok):
  • interferencia:az a jelenség, amelynél a hullámok találkozásából származó eredő hullámkép erősítésekből és gyengítésekből áll. Pl a szappanhártyán vagy az olajfolton látható színes csíkok a fényinterferencia következményei.
  • elhajlás: a hullám terjedési irányának változása, ha valamilyen akadály álla hullám útjában. Amennyiben ez az akadály egy optikai rács, a rács lehetővé teszi a fény hullámhosszának mérését, és alkalmazható színképek előállítására.
  • polarizáció:a tranzverzális hullámokban több síkban is terjedhetnek rezgések. Ha egy ilyen hullámot keskeny résen bocsátunk át, a résből csak olyan hullámok lépnek ki, amelyek rezgésiránya párhuzamos a rés irányával. Alkalmazása: polárszűrők (fényképezőgép, napszemüveg-tükröző felületek zavart fényeinek kiszűrése)
Fizika érettségi vizsga tétel 2010 - Az anyag kettős természeteRészecsketermészetét az bizonyítja, hogy hat rá a gravitáció.

Fényelektromos jelenség A különböző fémekből megfelelő megvilágítás hatására elektronok lépnek ki. Ez a fotoeffektus. A fény képes elvégezni az elektronok kilépési munkáját, ami által létrejöhet a jelenség, azonban ezt nem a megvilágítás erőssége, hanem a megvilágító fény frekvenciája határozza meg. Tehát a kilépő elektronok sebessége csak a megvilágító fény frekvenciájától és a fém anyagára jellemző kilépési munkától függ. A fotoeffektus csak akkor jöhet létre, ha a fény frekvenciája nagyobb egy küszöbnél, a határfrekvenciánál. A fényelektromos jelenség magyarázatára Albert Einstein kidolgozta a fény fotonelméletét. Abból a feltevésből indult ki, hogy a fény elemi, oszthatatlan energiacsomagként (részecskeként, amit fotonnak nevezett el, E=h·f energiaadagokkal (h=Plank állandó)) viselkedik akkor, ha a fém felületén elnyelődik. Ez a h·f energiaadag fedezi az elektron kilépési munkáját (a fennmaradó rész mozgási energia formájában marad meg).
  • Alkalmazása: riasztóberendezések, automatikus berendezések (aut. bekapcsolódó világítás – kivéve a hűtőket :D, ajtók, felvonók zárását ellenőrző biztonsági berendezések…), napelem (félvezető anyagból készült fényelektromos érzékelő, melyben fény hatására fezültség keletkezik, és áram indukálódik.)
  • Fényelektromos egyenlet: h*f=Eki +Emozg
Fizika érettségi vizsga tétel 2010 - Az anyag kettős természete Albert Einstein munkássága (1879.Németo.-1955 USA) Német fizikus, a modern elméleti fizika egyik megalapozója. 1905-ben megalkotta a speciális, majd 1916-ban az általánaos relativitáselméletet. Jelentőset alkotott a kvantummechanika területén: ő vezette be a fénykvantumok fogalmát, és megadta a fényelektromos-jelenség elméleti magyarázatát. Brown-mozgással kapcsolatos tanulmányai bizonyítékot szolgáltattak az atomok létezésére. A Bose-Einstein eloszlás, mint azóta kiderült, a bozonok (pl. a fotonok) eloszlását írja le. 1921-ben megkapta a fizikai Nobel-díjat.


A fotocella működése a fotoeffektuson alapul. A fotokatódba becsapódó foton a fotokatódból egy elektront üt ki. A kiütött elektronok a pozitívan töltött anód felé repülnek tova és ez így keletkezett áramot mérjük. A fotokatódot érő beeső fotonok fluxusa arányos a mért árammal. Fotocella előnyei: olcsó, egyszerű és - ami a legfontosabb – lineáris karakterisztikájú. Azonban alacsony az érzékenysége, külső áramra van szüksége és különböző fotokatódoknak különböző az átviteli karakterisztikájúk (más hullámhosszú fotonokra más az áram/beeső foton fluxus arány.)

A foton tehát az elektromágneses sugárzás elemi részecskéje. Energiája a Plank-állandó ás az elektromágneses hullám frekvenciájának szorzata: h*f=m*c^2 Tömege (nyugalmi tömege nulla): m=(h*f) / (c^2) A foton sebessége c (fénysebesség), tehát a lendülete: I= m*c = h*f/cFényelektromos egyenlet

A fizikában hullám-részecske kettősségnek nevezzük azt a koncepciót, hogy a fény és az anyag mutat mind hullám-, mind részecsketulajdonságokat. Ez a kvantummechanika egyik központi fogalma.


Fizika érettségi vizsga tétel 2010 - Az anyag kettős természeteLouis-Victor de Broglie megfogalmazta a de Broglie hipotézist (de Broglie féle hullámhossz) amiben azt állította, hogy minden anyagnak van hullámtermészete. Összefüggésbe hozta a λ hullámhosszat a p impulzussal. Szigorúan vett tudományos munkáján túl Louis de Broglie gondolkodott és írt a tudományfilozófiáról, beleértve a modern tudományos felfedezések értékét.Louis de Broglie így egy új területet teremtett a fizikában, a hullámmechanikát, egyesítve a fény és az anyag fizikáját. Ezért 1929-ben fizikai Nobel-díjban részesült. Ezen munkájának alkalmazásai közé tartozott az elektronmikroszkóp kifejlesztése, ami sokkal jobb felbontással rendelkezik, mint az optikai mikroszkóp, köszönhetően az elektronnak a fotonéhoz képest rövidebb hullámhosszának.


Anyaghullám:


Anyagi részecskékhez rendelhető hullám. Először amerikai fizikusok mutatták ki az anyaghullámokat kísérletileg: nagy sebességgel repülő elektronok találkozásakor interferencia jön létre, az interferenciakép koncentrikus gyűrűkből áll. Egy részecske anyaghullámának hossza annál kisebb, minél nagyobb a részecske sebessége és tömege

Fizika érettségi vizsga tétel 2010 - A fény

Fizika érettségi vizsga tétel 2010 - A fényA fizikában hullám-részecske kettősségnek nevezzük azt a koncepciót, hogy a fény és az anyag mutat mind hullám-, mind részecsketulajdonságokat. Ez a kvantummechanika egyik központi fogalma.

A fény hullámtermészetét az interferencia, fényelhajlás, és a polarizáció jelensége bizonyítja (hulámtulajdonságok):

* interferencia: az a jelenség, amelynél a hullámok találkozásából származó eredő hullámkép erősítésekből és gyengítésekből áll. Pl a szappanhártyán vagy az olajfolton látható színes csíkok a fényinterferencia következményei.
* elhajlás: a hullám terjedési irányának változása, ha valamilyen akadály álla hullám útjában. Amennyiben ez az akadály egy optikai rács, a rács lehetővé teszi a fény hullámhosszának mérését, és alkalmazható színképek előállítására.
* polarizáció: a tranzverzális hullámokban több síkban is terjedhetnek rezgések. Ha egy ilyen hullámot keskeny résen bocsátunk át, a résből csak olyan hullámok lépnek ki, amelyek rezgésiránya párhuzamos a rés irányával. Alkalmazása: polárszűrők (fényképezőgép, napszemüveg-tükröző felületek zavart fényeinek kiszűrése)

Részecsketermészetét az bizonyítja, hogy hat rá a gravitáció.

Fizika érettségi vizsga tétel 2010 - A fényFényelektromos jelenség: A különböző fémekből megfelelő megvilágítás hatására elektronok lépnek ki. Ez a fotoeffektus. A fény képes elvégezni az elektronok kilépési munkáját, ami által létrejöhet a jelenség, azonban ezt nem a megvilágítás erőssége, hanem a megvilágító fény frekvenciája határozza meg. Tehát a kilépő elektronok sebessége csak a megvilágító fény frekvenciájától és a fém anyagára jellemző kilépési munkától függ. A fotoeffektus csak akkor jöhet létre, ha a fény frekvenciája nagyobb egy küszöbnél, a határfrekvenciánál. A fényelektromos jelenség magyarázatára Albert Einstein kidolgozta a fény fotonelméletét. Abból a feltevésből indult ki, hogy a fény elemi, oszthatatlan energiacsomagként (részecskeként, amit fotonnak nevezett el, E=h·f energiaadagokkal (h=Plank állandó)) viselkedik akkor, ha a fém felületén elnyelődik. Ez a h·f energiaadag fedezi az elektron kilépési munkáját (a fennmaradó rész mozgási energia formájában marad meg).

Fizika érettségi vizsga tétel 2010 - A fény* Alkalmazása: riasztóberendezések, automatikus berendezések (aut. bekapcsolódó világítás – kivéve a hűtőket :D, ajtók, felvonók zárását ellenőrző biztonsági berendezések…), napelem (félvezető anyagból készült fényelektromos érzékelő, melyben fény hatására fezültség keletkezik, és áram indukálódik.)
* Fényelektromos egyenlet: h*f=Eki +Emozg

A foton az elektromágneses sugárzás elemi részecskéje. Energiája a Plank-állandó ás az elektromágneses hullám frekvenciájának szorzata: h*f=m*c^2 Tömege (nyugalmi tömege nulla): m=(h*f) / (c^2) A foton sebessége c (fénysebesség), tehát a lendülete: I= m*c = h*f/cFényelektromos egyenlet.

Fizika érettségi vizsga tétel 2010 - A fényElőször Olaf Römer, dán csillagász figyelt fel 1676-ban egy olyan jelenségre ami a fény véges sebességére utalt. Előtte azt hitték, hogy a fénynek nincs szüksége időre a terjedéshez.

A Föld Jupiterhez közeli helyzetében Römer megmérte a Jupiter egyik holdjának a keringési idejét, majd kiszámította, hogy fél év múlva, amikor a föld 300 millió kilóméterrel távolabb lesz a Jupitertől mikor kell majd a holdnak az árnyéktérben eltűnni. A megfigyelt esemény, a számításhoz képest késett 22 percet. Römer ezt azzal magyarázta, hogy nagyobb távolságot kell megtennie a fénynek. A többlet út és a többlet idő hányadosaként ki lehet számolni a föld sebességét: 3*10^11m / 10^3s = 3*10^8 m/s.

Földi körülmények között előszőr Fizeau, francia fizikus mért fénysebességet 1849-ben. Közös tengelyre szerelt fogaskeretek szemközti részein úgy bocsátott át fényt, hogy a fény útját tükrökkel meghosszabbította. A fogaskerekek nagy szögbességű forgatásánál a második fogaskerék résén nem jött át fény, mert közben a rés helyére egy fog került. A fény útjából és a kerék elfordulásának idejéből a fénysebbeséget ki lehet számítani.

A természetben elérhető legnagyobb sebesség a fény vákuumbeli sebessége, 3*10^8, ennél nagyobb sebesség sehol sem fordul elő.


Geometriai optika

Fizika érettségi vizsga tétel 2010 - A fényA geometriai optika egyszerű modell, amely a fény terjedését a fényforrásból minden irányban kilépő fénysugarakkal írja le, és nem foglalkozik a fény természetével (hullám vagy részecske). Alapfeltevései a következők: a fénysugár homogén közegben egyenes vonalban terjed, új közeg határán a visszaverődés és/vagy törés törvényének megfelelően halad tovább, és útja megfordítható.

Egy tárgy (fénykibocsátó test) valódi képéről beszélünk, ha a tárgy egyes pontjaiból kiinduló fénysugarak valamely optikai eszköz hatására újra egy pontban találkoznak. A valódi kép ernyőn felfogható. Egy tárgy látszólagos képéről van szó, ha a tárgy egyes pontjaiból kiinduló fénysugarak valamely optikai eszköz hatására úgy tartanak szét, mintha a tér egy pontjából indultak volna. A látszólagos kép nem fogható fel ernyőn, de a szem képes érzékelni azáltal hogy a széttartó fénysugarak látszólagos metszéspontjában látja a fénykeltő helyet.

A tárgy és a leképező eszköz távolságát tárgytávolságnak (t), a kép és a leképező eszköz távolságát képtávolságnak nevezzük (k). A leképezés a tárgyhoz geometriailag hasonló képet állít elő, amely a tárgyhoz viszonyított állása szerint lehet egyenes állású vagy fordított állású. A kép távolságának (K) és a tárgy nagyságának (T) aránya a nagyítás: N=K/T

1. SZÓRÓLENCSE (pl.: Galilei-féle távcső)

A keletkezett kép (A’B’), bárhova téve a tárgyat: látszólagos, a tárggyal azonos állású és kicsinyített. A kép a tárggyal azonos oldalon van. A hasonló háromszögek alapján: N=K/T=k/t

2. GYŰJTŐLENCSE (pl.: fényképezőgép lencséje, vetítőgép, Kepler-féle távcső)
Öt eset van:
• t>2f: A keletkezett kép: valódi, fordított és kicsinyített. A kép a tárggyal ellentétes oldalon van. 2f>k>f

• t=2f: A keletkezett kép: valódi, fordított és a tárggyal azonos méretű. A kép a tárggyal ellentétes oldalon van. k=2f

• 2f>t>f: A keletkezett kép: valódi, fordított és nagyított. A kép a tárggyal ellentétes oldalon van. k>2f

• t=f: A megtört sugarak párhuzamosak, kép nincs.

• f<0

Mindegyik esetben az ABO háromszög hasonló az A’B’O háromszöghöz, így a nagyítás: N=K/T=k/t

Felhasználás: közlekedési tükör, távcső, mikroszkóp.

Lézer:A lézer egy olyan fényforrás, amely stimulált emissziót használ egybefüggő fénysugár létrehozására. Neve az angol Light Amplification by Stimulated Emission of Radiation kifejezés rövidítése, a laser magyarosításából származik.

* A létrejött fény időben és térben koherens, a lézer által kibocsátott hullámok fázisa a sugár minden keresztmetszeténél azonos.
* A lézernyaláb keskeny és nagyon kis széttartású nyaláb. A lézerfény nagyrészt párhuzamos fénysugarakból áll, nagyon kis szóródási szöggel. Ezzel nagy energiasűrűség érhető el szűk sugárban, a sugár által megtett távolságtól függetlenül.
* A lézerek energiája kis térrészben koncentrálódik, a lézerfény teljesítménysűrűsége a megszokott fényforrásokénak sokszorosa lehet.
* A lézer által kibocsátott hullámok mágneses mezejének iránya állandó.
* A lézerek fénye egyszínű. A lézersugár egy olyan elektromágneses hullám, amely közel egyetlen hullámhosszú összetevőből áll.

Fizika érettségi vizsga tétel 2010 - Az erő

Fizika érettségi vizsga tétel 2010 - Az erőIsaac Newton, angol fizikus nevéhez fűződik a többek között a binomiális tétel, a differenciál- és integrálszámítás alapjai és a fénnyel és a gravitációval kapcsolatos alapgondolatok. Azzal vált a fizika egyik legjelentősebb alakjává, hogy az őt megelőző fizikusok gondolatait rendszerbe foglalta, kiegészítette, és általánossá tette."A természetfilozófia matematikai alapelvei" című művében Newton előszőr a tömeg, a lendület, a tehetetlenség fogalmát definiálta, majd ezt a gondolatsort a mozgás alaptörvényeinek megfogalmazásával folytatta. 

Newton I. törvénye - a tehetetlenség törvényeA tehetetlenség a testek legfontosabb, elidegeníthetetlenebb tulajdonsága. Annak a testnek nagyobb a tehetetlensége, amelyiknek nehezebb megváltoztatni a sebességét. 'Egy test mindaddig megőrzi nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását, amíg egy másik test ennek megváltoztatására rá nem kényszeríti.'A tehetetlenség mértéke a tömeg. Jele: m, mértékegysége: kg. Két test kölcsönhatása közben létrejött sebességváltozás fordítottan arányos a testek tömegével: m2=(m1*v1)/v2

Newton II. törvénye - a dinamika alaptörvénye
Az azonos mozgó testeknek is lehet eltérő a mozgásállapota. A testek mozgásállapotát dinamikai szempontból jellemző mennyiséget lendületnek, impulzusnak nevezzük. Bármely két test mechanikai kölcsönhatása során bekövetkező sebességváltozások fordítottan arányosak a test tömegével. Tehát tömegük és sebesség változásuk szorzata egyenlő. m1*v1=m2*v2. Az m*v szorzat az m tömegű és v sebességű test mozgás állapotát jellemzi dinamikai szempontból, ezt a szorzatut nevezzük lendületnek. Jele: I, mértékegysége: kg*m/s. A lendület vektormennyiség, iránya mindig megegyezik a pillanatnyi sebesség irányával, tehát a test mozgásának mindenkori irányával.

Fizika érettségi vizsga tétel 2010 - Az erőAzt az anyagi rendszert, amiben a testekre nem hat a környezetük, zárt rendszernek tekintjük. Zárt rendszert alkotó testek állapotváltozásánál , csak a rendszerbeli testek egymásra gyakorolt hatását kell figyelni. A megmaradási tételek csak zárt rendszerekre alkalmazhatóak. Ilyen a lendületmegmaradás törvénye is: zárt rendszert alkotó testek lendületváltozásának összege nulla, tehát a zárt rendszer lendülete állandó.

A mozgásállapot változtató hatást erőhatásnak, mennyiségi jellemzőjét pedig erőnek nevezzük. Jele: F. Az erőhatásnak fontos jellemzője az iránya is, ezért az erő vektormennyiség. A lendületváltozás csak az erőtől és annak időtartamától függ. Az az erőhatás a nagyobb, amelyik ugyanazon a testen ugyanannyi idő alatt nagyobb lendületváltozást hoz létre, vagy ugyanakkora lendületváltoztatáshoz kevesebb időre van szüksége. F=I/t. Az erő mértékegysége: N (newton). Az F=(m*v)/t képlet átrendezhető F*t=m*v formába. F*t az erőhatásra jellemző és erőlökésnek nevezzük. Az m*v lendületváltozás az erőlökés következménye

Az erő nem csak a lendületváltozás sebességeként számolható ki. F=I*t=(m*v)/t=m*(v/t)=m*a. Ezt nevezik a dinamika II. alaptörvényének.
'A változatlan tömegű testet gyorsító erő nagysága a test gyorsulásának és a tömegének a szorzata F=m*a'

Fizika érettségi vizsga tétel 2010 - Az erőNewton III. törvénye - a hatás-ellenhatás törvényeAmikor egy test erőhatás gyakorol egy testre, akkor az a test is gyakorol az első testre erőhatást. A két test kölcsönhatásánál fellépő egyik erőt, erőnek a másikat ellenerőnek nevezzük.'Két test esetén ugyanabban a kölcsönhatásban fellépő két erő egyenlő nagyságú, közös hatásvonalú, ellentétes irányú, egyik az egyik testre, a másik a másik testre hat.'
Egy testet egyszerre több erőhatás is érheti, ezek az erőhatások helyettesíthetőek egy darab erővel amelynek ugyanaz a következménye. Ezt az erőt eredő erőnek nevezzük.

Erők fajtái: G, S(t), S, F(r)
Erőtörvények: F = μ * F(ny)
G = m*g
F(r) = -D * ∆l
F(g) =
γ*
m(1)*m(2) / r^2
+példák

Fizika érettségi vizsga tétel 2010 - Hullámok

A hullám fogalma: a hullám időben és térben tovaterjedő rezgésállapot, mely energiát szállít. A hullámok jellemzői:
    Fizika érettségi vizsga tétel 2010 - Hullámok
  • Két szomszédos, azonos fázisú hely térbeli távolsága a hullámhossz, melynek jele λ, mértékegysége m.
  • Két szomszédos, azonos fázisú hely időbeli távolsága a periódusidő, jele T, mértékegysége s.
  • Az amplitúdó a hullám maximális kitérésének nagysága egy hullámcikluson belül. Jele A, mértékegysége általában méter, hanghullámok esetén azonban nyomásegységben is mérhető.
  • A rezgésszám, vagyis frekvencia (f vagy υ) a másodpercenként végzett rezgések száma.
  • A terjedési sebesség a haladó hullám meghatározott fázisállapotának tovahaladási sebessége. Jele c és megegyezik a hullám hosszának és a frekvenciájának szorzatával.

Két hullámtípust különböztetünk meg: A longitudinális hullámok kitérése a terjedési iránnyal egybeesik. A különböző közegekben, mint ritkulások és sűrűsödések lépnek fel. Pl. ilyen a legtöbb hanghullám. A tranzverzális hullámokban a kitérés a terjedési irányra merőleges. Ilyen pl. egy húron terjedő hullámok, vagy a szabad elektromágneses hullámok.

Interferenciát akkor észlelünk, ha a hullámok koherensek, vagyis a találkozásuk helyén fáziskülönbségük állandó. Ha a fáziskülönbség a fél hullámhossz páros számú többszöröse, maximális erősítést, ha a fél hullámhossz páratlan számú többszöröse, kioltást tapasztalhatunk.

Fizika érettségi vizsga tétel 2010 - HullámokRugalmas pontsor (pl kötél) végére érkező hullám mind a rögzített, mind a szabad végről visszaverődik. A visszaverődés a szabad végről azonos, a rögzített végről ellentétes fázisban történik. Alkalmas frekvenciaválasztással elérhető, hogy a rugalmas pontsoron folyamatosan keltett hullám a pontsor végéről visszaverődő hullámmal úgy találkozzon, hogy állóhullámok jöjjenek létre. Állóhullámról akkor beszélünk, ha az egyes pontok mozognak, de a hullám egy adott fázisát nem látjuk továbbhaladni. Duzzadóhelyek: azok a pontok, amelyek maximális amplitúdóval rezegnek Csomópontok: azok a pontok, amelyek nem végeznek rezgést Két duzzadóhely/két csomópont távolsága a hullámhossz fele.
A hang A hang térben terjedő longitudinális mechanikai hullám. A hangforrás egy rugalmas test, vagy közeg, amely egy vele közölt energiát rezgési energiává alakítja.
A hang jellemzői:
  • Hangerősség: a hangintenzitással mérhető, amely a hangforrás által az 1 m2 –nyi területre sugárzott teljesítményt jelenti, ezért egysége W/ m^2
  • Hangmagasság: a hang rezgésszámával (frekvenciájával) jellemezhető. (pl. az 1:2 frekvenciaarányú hangok hangköze egy oktáv. Egy oktávon belül 7 lépésben követik egymást azok a hangok, amelyeket fülünkkel egymást természetes módon követő egész hangközöknek (dúr skála) érzékelünk. A zenei hangok frekvenciáinak közös viszonyítási alapértéke a normál a hang, melynek értéke 440 Hz. )
  • Hangszín: a hangszín annak a következménye, hogy a zenei hangok szinte sohasem egyetlen frekvenciát jelentenek, az alapfrekvencia mellett felharmonikusok is megjelennek.
  • Hangsebesség: a hang terjedési sebessége a levegőben 330 m/s. Aszerint változik, hogy milyen közegben terjednek a hullámok. Szintén kiszámítható a c= λ*υ képlet alapján.
Fizika érettségi vizsga tétel 2010 - Hullámok
Rezonancia: ha a kényszerrezgést létrehozó rendszer frekvenciája megegyezik a kényszerrezgést végző rendszer sajátfrekvenciájával, akkor a rezgő test amplitúdója maximális lesz, ez a jelenség a rezonancia. Ha az amplitúdó nagyon nagyra nő, bekövetkezhet a rezonanciakatasztrófa, melyben minél kisebb a csillapító hatás, annál nagyobb a rezonancia. (1940- Takoma - szoros fölötti híd)

Lebegés: Két közeli frekvenciájú hang együttes megszólaltatásakor egy periodikusan ingadozó erősségű hangot hallunk. Ezt a jelenséget lebegésnek nevezzük.
Doppler-effektus: a hullám frekvenciájában és ezzel együtt hullámhosszában megjelenő változás, mely amiatt alakul ki, hogy a hullámforrás és a megfigyelő egymáshoz képest mozog. Pl. ha sípoló mozdony (adó) közeledik egy megfigyelőhöz (vevő), akkor az utóbbi magasabb frekvenciájú hangot hall, mint a vonaton ülő utas. Miután a mozdony elhaladt a megfigyelő mellett, a frekvencia észrevehetően lecsökken.
Az elektromágneses sugárzás a térben transzverzális hullám formájában terjed fénysebességgel, impulzust szállítva. Részecskéi a fotonok. Elméletét James Clerk Maxwell skót fizikus dolgozta ki, és írta le az ún. Maxwell-egyenletekben (4db van, egyenként makroszkopikus és mikroszkopikus formában)


Fizika érettségi vizsga tétel 2010 - HullámokAz elektromágneses spektrumnak nincs alsó – illetve felső hullámhosszhatára. Az emberi szem által érzékelhető tartomány a 380 és a 780 nm közötti. Az ennél kissebbi tartományba az ultraibolya-, a röntgen- és a gammasugárzás tartozik, a 780nm fölötti hullámhossztartományba pedig az infravörös-, a mikro- és a rádióhullámok.

Rezgőkör: egy tekercs és egy kondenzátor párhuzamosan kapcsolva, a paraméterektől függő sebességgel alakul át a tekercs energiája a kondenzátor energiájává, és fordítva, periodikusan, az összenergia viszont állandó marad

Fénykibocsátás: Magas hőmérsékleten izzó szilárd és folyékony anyagok által kibocsátott fényben az összes árnyalat megtalálható, színképük folytonos. Ez a folytonos színkép nem függ a kibocsátó test anyagi minőségétől.
Izzó gőzök és gázok által kibocsátott fény színképe a kibocsátó gőzre illetve gázra jellemző, vonalas emissziós szinkép.

Fényelnyelés: az izzó gőzök vagy gázok a rajtuk átbocsátott fehér fényből elnyelik azokat a színeket, amiket maguk is kibocsátani képesek. A színképben megjelennek fekete vonalak. Az elnyelési színkép ugyanúgy jellemző az anyagi minőségre, mint az emissziós.


A hullám (Die Welle)Egy kicsit más hullám - már régebben láttam ezt a filmet, de ahogy a posthoz kerestem a képeket rábukkantam és találtam hozzá ezt a képet és ezt a leírást. A hullám (Die Welle) című német filmet csak ajánlani tudom. Olvassatok többet a A hullám című filmről.

autokrácia = Az autokrácia (magyarul: egyeduralom, önkényuralom) olyan kormányzati forma, amelyben a politikai hatalom egésze egyetlen személy (vagy személyek kis zárt csoportja) kezében összpontosul.A hatalom birtoklását az autokrata többek közt a hagyománnyal, a kritikus erőforrások ellenőrzésével, vagy személyes karizmájával igazolhatja.

Fizika érettségi vizsga tétel 2010 - Az atom szerkezete

Fizika érettségi vizsga tétel 2010 - Az atom szerkezete
Avogadro törvénye:az azonos térfogatú, azonos hőmérsékletű és nyomású gázok azonos számú részecskét tartalmaznak. (Avogadro-szám: 6*1023, a szénatomok száma 12 gramm C12 izotópban )

Elemi töltés: megegyezik a proton töltésével: e=1,6*10-19 C

Elektron: negatív töltésű elemi részecske, John Thompson mutatta ki először. Tömege 9,11*10-31kg, töltése megegyezik az elemi töltéssel, csak negatív. Az atommag körül kering meghatározott energiaszintű pályákon, amelyek állúhullámokkal írhatók fel (Bohr-féle atommodell)
Fizika érettségi vizsga tétel 2010 - Az atom szerkezete

Az atom felépítése (Bohr-féle atommodell szerint): Az atommag pozitív töltésű, protonokból és neutronokból áll (a hidrogén atommagban csak proton van), az atom tömegének legnagyobb része itt található, mégis nagyon apró a teljes atommérethez képest (viszonyítás: ha az atom egy 100m sugarú kör, az atommag sugara 1mm). Az atommag körül keringenek az elektronok, csak meghatározott sugarú (energiaszintű) pályákon. A centripetális erőt az elektrosztatikus vonzás biztosítja. Ezek a pályák állóhullámokként írhatóak le. Ha egy elektron alacsonyabb szintű pályára ugrik, az energiakülönbség foton formájában sugárzódik ki. Magasabb pályára lépéshez viszont külső energiára van szükség.
 
Fizika érettségi vizsga tétel 2010 - Az atom szerkezete Rutherford szóráskísérlete: Rutherford alfa részecskéket szóratott vékony fémfólián és a várakozásokkal ellentétben azok nagy része lassulás vagy irányváltozás nélkül áthaladt a fólián, kis részük pedig visszaverődött. Ez megcáfolta a Thompson-féle atommodellt, hiszen azon irányváltozás nélkül át kellett volna haladnia a részecskéknek, és le is kellett volna lassulniuk. Ebből kiindulva alkotta meg Rutherford a saját atommodeljét, amely szerint az atommag nagyon kicsi az atom teljes méretéhez képest, de mégis ott található az anyag legnagyobb része.

Atommodellek:
  • Thompson-féle: ,,mazsolás puding” az elektronok rendezetlenül helyezkednek el egy pozityv töltésű anyagban
    Ennek az atommodellnek a legnagyobb hiányossága a nem megfelelő tömegeloszlás
  • Rutherford-féle: Naprendszerhez hasonló, ahol az elektronok tetszőleges pályákon keringenek az atommag körül, a körpályán tartó erő az elektrosztatikus vonzás.
    A tömegeloszlást itt a szórási kísérlet után úgy írta le, hogy az atommag a teljes atommérethez képest nagyon kicsi, de mégis itt található az anyag legnagyobb része.
    Ez az atommodell hibás, mivel az állandóan gyorsuló elektronoknak sugározniuk kellene, emiatt előbb-utóbb a magba esnének a csökkenő sugarú pálya és az így még jobban növekvő sugárzás miatt.
  • Bohr-féle: a Rutherford-modell javított változata, az elektronok nem keringhetnek tetszőleges pályákon, hanem csak meghatározott energiaszinteken, ezek a pályák pedig állóhullámokként írhatóak le.
    Ha az elektron pályát vált, akkor vagy energia kell hozzá, vagy energia sugárzódik ki foton formájában.

Fizika érettségi vizsga tétel 2010 - Az energia fajtái, munka, teljesítmény

Energia: fizikai alapmennyiség, munkavégzőképességet jelöl.
 

Fizika érettségi vizsga tétel 2010 - Az energia fajtái, munka, teljesítmény
Energiafajták:
    Fizika érettségi vizsga tétel 2010 - Az energia fajtái, munka, teljesítmény
  • Mechanikai:
    - Mozgási energia: Em=1/2m*v^2
    - Helyzeti (potenciális) energia: Eh=m*g*h
    - Rugalmas energia: Er=1/2D*x^2
  • Belső energia:- Egy zárt rendszer összes energiatartalma
    - Nagy része az adott anyag részecskéinek mechanikai energiája (termikus energia): Gázok esetében Eb=f/2*n*R*T
    - ΔEb = Q+W (Termodinamika I. főtétele)
  • Kondenzátor enegiája: EC = 1/2C*U^2
  • Tekercs energiája: EL = 1/2L*I^2
  • Foton energiája: Ef = h*f
  • Magenergia: E = m*c^2 (ahol m a tömegdefektus)

Munkatétel: Adott idő alatt a test mozgási energiájának a megváltozása megegyezik azzal a munkával, amit a testen végeztek a rá ható erők.
Fizika érettségi vizsga tétel 2010 - Az energia fajtái, munka, teljesítmény

Teljesítmény: A munka és az idő hányadosa, a munkavégzés sebessége.
P = W/t


Hatásfok: a hasznos és a befektetett munka hányadosa, 1nél kisebb tizedestört.
Az energia-megmaradás törvényének értelmében az energia nem vész el, csak átalakul. Sok folyamatban keletkezik melléktermékként hő. Ezt meg lehet fordítani, így gépeket lehet készíteni (hőerőgépek). Ezek hő befektetésével mechanikai munkát tudnak végezni.

ALBERT EINSTEIN, a relativitáselmélet megalkotója

Megváltozott-e a fizika a XX. sz.-ban?
A század elején a fizika tudománya óriási foradalmon ment keresztül, amelynek révén felnõ és teljesen átalakult a XIX. sz.-i állapotához képest. Ennek köszönketõen az ember kiszélesíthette és tökéletesíthette a világról alkotott képét és azt az irányító törvényeket. Ennek a forradalomnak a fõszereplõje volt Albert Einstein.

Ki volt Albert Einstein ?
1874-ben született Ulmban, Németország délkeleti városában egy zsidó családban. Csendes, magába forduló gyerek volt, aki nagyon szenvedett minden parancstól és kötelezettségtõl. München gimnáziumában nagyon nehezen alkalmazkodott a klasszikus nyelvek hagyományos tanításához, ezzel szemben egyre nagyobb szenvedéllyel fordul a természettudományok felé.

Mikor született a matematika iránti ,,szerelme” ?
Amikor tizenkét éves volt, az elsõ algebraleckéjét nagybátjától vette; ez és az ezzel párhuzamosan olvasott geometriakönyve szó szerint magával ragadta, ugyanugy, mint a zene, amely élete másik nagy szenvedélye volt. Miután befejezte tanulmányait Münchenben, egy rövid idõre Milánóba költözött a szüleivel, majd 21 éves korában leéretségizett a zürichi technikumban.

Milyen elméleteket dolgozott ki ?
Einstein 1905-ben jelentette meg az elsõ munkáit a ,,relativitáselméletrõl”, amelynek révén hiressé vált. Az idõben és térben levõ relativitásról szóló általános koncepciók nem voltak ismeretlenek a fizika tudományának területén: már a XVI. sz. óta foglalkoztak vele. Ennek az elméletnek az elsõ fontos következménye az volt, hogy felfedezték a ,,sebességnek van határa”: semmillyen test nem képes meghaladni a térben haladó fény sebességét, mivel a test tömege nõ a sebességgel, és annál nehezebb a test sebességét növelni, minél gyorsabb.

Mi a relativitáselmélet híres képlete ?
Einstein ezt az elméletet a mára mára már híressé vált képletben, E=mc2, pontosította, amelyben az m egyenlõ anyaggal, amit meg kell szorozni a fénysebesség négyzetével, amely energiává (E) alakul át… Egy tömeget, például grammban, meg kell szorozni a fénysebesség négyzetével centiméterekben, és már megkapjuk az energia értékét; tehát egy kis tömeg nagy mennyiségu energiává alakulhat át. Ezt a törvényt használják fel arra, hogy kiszámolják az atommagok kapcsolatának az energiáját, és arra is, hogy mennyi energia képes felszabadulni ezeknek az atommagoknak a maghasadása és a fúziós folyamatai alatt.

Milyen elismeréseket kapott ?
1920-ban neki ítélték a Nobel-díjat az ,,elméleti fizika területén végzett munkájáért”. A tudós, híres antikonformizmusához híven, a kapott pénzt Berlin szegényeinek ajánlotta fel. A következõ években meghívták, hogy a világ összes táján, a Szovjetuniótól kezdve a Távol-Keletig, konferenciákat tartson, fõleg az Egyesült Ållamokban, ahol nagy lelkesedéssel fogadták.

Miért költözött át Amerikába ?
Einstein mindig kész volt a saját eszméiért harcolni, a gondolkodás szabadságáért, az erõszakellenességért és a pacifizmusért. A harmincas években Németország helyzete Hitler diktaturájával megváltozott, ezért Einstein úgy döntött, hogy az Amerika Egyesült Ållamokba települ, ahol ezután 22 évig élt, és a Princeton Egyetemen tanított egészen 1955-ben bekövetkezett haláláig. Diákjai és tanártársai egytõl egyig emlékeznek antikonformista magatartására, különségeire, mint amikor nyáron szandálban sétált az utakon egy fagylaltot nyalogatva mindenki nagy megdöbbenésére… Vagy amikor visszavonult a tanítástól, és a gyerekeknek segített a matematika házi feladatok megoldásában, és mindig kijelentette, hogy sikerült tõlük valami újat tanulnia…

Készítette: Izsák Csaba
VI. C oszt.

Fizika érettségi vizsga tétel 2010 - Megmaradási törvények (energia, tömeg, lendület, töltés)

Fizika érettségi vizsga tétel 2010 - Megmaradási törvények (energia, tömeg, lendület, töltés) Lendületmegmaradás: egy zárt rendszer (olyan rendszer, amelyben csak belső erők hatnak) összimpulzusa időben állandó.
Ütközések: -tökéletesen rugalmas: ha a vizsgált rendszer mozgási energiája megmarad
-tökéletesen rugalmatlan: ütközés után a két érintkező test sebessége megegyezik (összetapadnak), de a mozgási energia nem marad meg (például alakváltozási munkára fordítódik)

Energiamegmaradás: az energia nem vész el, csak átalakul.

Hőtan I. főtétele mint energiamegmaradás: mivel az energia nem vész el, csak átalakul, egy adott rendszer és környezete energiájának összege állandó.

Potenciál: Adott mező egy pontjához tartozó érték, amely megmutatja, hogy mennyi munkát végez a mező egy próbatesten/próbatöltésen ahhoz, hogy egy szabadon választott null helyzetből az adott pontba mozgassa.

Konzervatív mező: olyan mező, amely munkavégzése független a megtett úttól, csak a kiinduló és a végpont potenciáljától függ. (pl gravitációs, elektrosztatikus mező)

Mechanikai energia megmaradása: ha egy pontszerű testre csak konzervatív erők (konzervatív mező által kifejtett erő) hatnak, akkor mechanikai energiáinak összege állandó.

Fizika érettségi vizsga tétel 2010 - Megmaradási törvények (energia, tömeg, lendület, töltés) Energiaátalakulás rezgőkörökben: egy rezgőkör egy kondenzátor és egy tekercs párhuzamos kapcsolásából alakul ki, itt a rezgőkör paramétereitől függő sebességgel alakul át a kondenzátor energiája a tekercs energiájává és fordítva. Az összenergia ideális rezgőkör esetén állandó.

Töltésmegmaradás: környezetétől elszigetelt rendszerben az elektromos töltés mennyisége megmarad.

Tömeg-energia ekvivalencia: a speciális relativitáselmélet következménye, mely szerint a test nyugalmi energiája megegyezik a tömeg és a fénysebesség szorzatával: E=m*c^2. Tehát a tömeg és az energia arányosak egymással. (maghasadáskor felszabaduló energia számolható vele, a felszabaduló energia a tömegdefektus és a fénysebesség szorzata)
Fizika érettségi vizsga tétel 2010 - Megmaradási törvények (energia, tömeg, lendület, töltés)

Szétsugárzás: másnéven annihiláció: ha egy elektron és egy pozitron (elektron antirészecskéje, ugyanolyanok a tulajdonságai mint az elektronnak, csak a töltése pozitív) találkozik, kölcsönösen megsemmisítik egymást és két, ritkábban három gamma foton keletkezik (egy nem keletkezhet, mert akkor sérülne a lendületmegmaradás törvénye)

Párkeltés: a foton részecsketermészetével magyarázható; ha elegendően nagy energiájú foton egy atommag közelében halad el, akkor eltűnhet és elektron-pozitron párokat kelthet.

Fizika érettségi vizsga tétel 2010 - Gravitáció

Fizika érettségi vizsga tétel 2010 - Gravitáció
A tömegmegmaradás törvénye A tömeg skalármennyiség. A tömegek összege akkor is állandó, ha a test halmazállapota megváltozik, vagy kémiai átalakulások játszódnak le.

Súly és súlytalanság A gravitációs mezőben a testeket erőhatás éri. Ha ezeket a testeket egy felfüggesztés vagy alátámasztás egyensúlyban tartja, akkor ezek a testek is erőhatást fejtenek ki a felfüggesztésükre vagy az alátámasztásukra. Az az erő, amely a gravitációs vonzás miatt húzza a felfüggesztést, vagy nyomja az alátámasztást a test súlya. Ez gravitációs mezőben lévő rendszer akkor van súlytalansági állapotban, ha nincs alátámasztva vagy felfüggesztve, hiszen akkor nem fejt ki súlyt semmire. A súlytalan állapot nem a gravitáció hiányát jelenti, hanem azt, hogy csak gravitációs erők hatnak a súlytalannak tapasztalt testre.

Az általános tömegvonzás (nehézségi erő) elméletét Newton 1687-ben megjelent könyvében írta le. Gondolatmenete arra a feltevésre épült, hogy bármely két test között fellép-kölcsönös vonzóerővel jellemezhető- gravitációs kölcsönhatás. Két pontszerű test között a gravitációs vonzóerő egyenesen arányos a kölcsönhatásban részt vevő testek tömegeivel, és fordítottan arányos a közöttük lévő távolság négyzetével. (képlet a fgvtáblában, ide nem lehet jól képletet írni)
Fizika érettségi vizsga tétel 2010 - Gravitáció
Nehézségi gyorsulás:
m*a=FgravKépetekből kapható meg, az "a" kifejezésével, általában bolygóra jellemző állandó (a kísérlettel megmérhető). A földön ez az érték 9,81m/s^2.
Newton: angol fizikus első publikált munkája egy a fény természetéről szóló úttörő jellegű értekezés volt, melyben megállapította, hogy a fehér fény a szivárvány színeinek keveréke, valamit részletesen elemezte a fénytörés és –visszaverődés törvényszerűségeit.

Ezek alapján tervezte meg és készítette el 1668-ban az első tükrös távcsövet, azaz a teleszkópot, melyet a legtöbb csillagvizsgálóban ma is használnak.


Ennél fontosabb eredményeket ért el azonban az elméleti matematikában: megalkotta a differenciál- és integrálszámítást.


Legfontosabb felfedezései azonban a mechanika területén születtek: négy törvényt is alkotott.


Kozmikus sebességek:
(képletek a fgvtáblában)
-Első kozmikus sebesség: vagy körsebesség az a sebesség, amellyel egy égitest felszínével párhuzamosan indított test kör­pályán kering. Nagysága az égitest tömegével egyenesen, az indítás ma­gas­sá­gával fordítva arányos.

Fizika érettségi vizsga tétel 2010 - Gravitáció
-Ha az indítási sebesség a körsebesség √2-szerese, akkor a pálya parabola alakú, vagyis az indított test végtelenül eltávolodik a Földtől. Ez a második kozmikus sebesség vagy az ún. szökési sebesség.
-A harmadik kozmikus sebesség az a sebesség, mellyel egy űrhajót vagy más testet adott pontról indítva az éppen elhagyja a Naprendszert. A Földről indított űrhajó esetében ez a sebesség 16,6 km/s.


+Fonálngás kísérlet is benne lesz

Fizika érettségi vizsga tétel 2010 - Gázok állapotváltozásai

    Fizika érettségi vizsga tétel 2010 - Gázok állapotváltozásai
  • A gázok állapotjelzői és mértékegységeik.
  • A gázok állapotegyenlete.
  • Az állapotváltozás fogalma, gáztörvények.
  • Nevezetes állapotváltozások, (izobár, izochor, izoterm, adiabatikus), ábrázolás p–V diagramon, a hőtan első főtételének alkalmazása a fenti állapotváltozásokra.
  • Az ideális gáz kinetikus modellje.
  • A témához kapcsolható természeti jelenségek és egyszerű berendezések működésének magyarázata.

Az állapotváltozás olyan folyamat, melynek során egy közeg állapotát leíró jellemzőkben, az úgynevezett állapotjelzőkben változás következik be. A gázok állapotváltozása során minimum két állapotjelző megváltozik. Az állapotjelzők megváltozását a gáztörvényekkel írjuk le.

Egy gáz állapotát az un. állapotjelzőkkel lehet jellemezni. Ezek a következők:
  • Tömeg: m [kg]
  • Hőmérséklet: T [°C / K]
  • Térfogat: V [m^3]
  • Nyomás: p [Pa]

Ezek közül a tömeg, és a térfogat extenzív (összeadandó), a nyomás, és a hőmérséklet pedig intenzív (kiegyenlítődő) állapotjelző.

Fizika érettségi vizsga tétel 2010 - Gázok állapotváltozásaiA gázok állapotváltozásainak vizsgálatakor csak ideális gázokkal foglalkozunk. Ezek a valóságban nem léteznek, de a valódi gázok közepes nyomáson, és hőmérsékleten hasonlóan viselkednek. Az ideális gáz V-T grafikonja a T (azaz x) tengelyt az abszolút nulla fokon metszi (-273,15K).

Kinetikus gázmodell
  • A gáz olyan részecskékből áll, amelyek össztérfogata elhanyagolható a gázt tartalmazó edény térfogatához képest.
  • A részecskék egymással és az edény falával energiaveszteség nélkül ütköznek.
  • A részecskék közötti erőhatások elhanyagolhatóak, ezért két ütközés között egyenes vonalú egyenletes mozgást végeznek.

Állapotváltozások

Izoterm:
Gáztörvény neve: Boyle - Mariotte
Törvény: p(1) * V(1) = p(2) * V(2)
T = állandó
p-V diagramja görbe (hasonló az 1/x függvényhez)
∆E = 0
-Q =
∆W
C = végtelen vagy nincs

Izobár:
Gáztörvény neve: Gay – Lussac I.
Törvény: V(1) / T(1) = V(2) / T(2)
p = állandó
p-V diagrammja párhuzamos a V tengellyel
Q = f+2 / 2*n*R* ∆T
C(p) = C(v)+R
|Q| > |W|

Izochor:
Gáztörvény neve: Gay – Lussac II.
Törvény: p(1) / T(1) = p(2) / T(2)
V = állandó
p-V diagrammja párhuzamos a p tengellyel
∆E = Q∆W = 0
C = f/2 * R

Adiabatikus:
Gáztörvény neve: Boyle - Mariotte
Törvény: p(1) * V(1) = p(2) * V(2)
T = állandó
p-V diagramja görbe (hasonló az 1/x függvényhez)
Q = 0∆E = ∆W
C = 0
Nem történik hőátadás. Adiabatikus táguláskor a gáz lehűl, adiabatikus összenyomás esetén a gáz felmelegszik.

Gáztörvények

Boyle – Mariotte: Adott mennyiségű ideális gáz állandó hőmérsékleten mért térfogata és nyomása fordítottan arányos.
Fizika érettségi vizsga tétel 2010 - Gázok állapotváltozásaiGay - Lussac I: Adott mennyiségű ideális gáz állandó nyomáson mért térfogata egyenesen arányos az abszolút hőmérsékletével.
Gay - Lussac II: Adott mennyiségű ideális gáz állandó térfogaton mért nyomása egyenesen arányos a kelvinben mért hőmérsékletével.
Egyesített gáztörvény: Adott mennyiségű ideális gáz nyomásának és térfogatának szorzata egyenesen arányos az abszolút hőmérsékletével.
p(1) * V(1) / T(1) = p(2) * V(2) / T(2)

Avogadro tétel:
Anyagmennyiség: n [mol]
Moláris tömeg: M [g/mol]
Részecskeszám: N
Avogadro szám: N(A) = 6,02 * 10^23 (1 mólban a részecskék száma)
Egyetemes gázállandó: R = 8,314 J/mol*K
Boltzmann-állandó: k = 1,38 * 10^-23 J/K

n = m/M = N/N(A)
ρ = m/V
k = R/N(a)

Állapotegyenlet: p*V = m / M*R*T
=> p*V = N / N(A)*R*T = N * R/N(A) * T = N*k*T
=> p = ρ/M * R*T

Fizika érettségi vizsga tétel 2010 - Halmazállapot-változások, fajhő

Fizika érettségi vizsga tétel 2010 - Halmazállapot-változások, fajhő
  • A szilárd, a cseppfolyós és a légnemű halmazállapot általános jellemzése; gáz, gőz, telített gőz, páratartalom fogalma.
  • Az olvadás/fagyás, párolgás/forrás, lecsapódás, szublimáció folyamata, jellemző mennyiségei, mértékegységeik.
  • A folyamatokat befolyásoló tényezők.
  • A halmazállapot-változások jellemzése energetikai szempontból.
  • Fajhő, hőkapacitás, belső energia, hőmérséklet fogalma, mértékegységeik.
  • Hétköznapi példák fázisátalakulásokra.

Négy halmazállapota lehet egy anyagnak: szilárd, cseppfolyós, légnemű, plazma. Ezek közül az első három fordul elő leggyakrabban.

A szilárd testek kristályos szerkezetűek. Alakjuk, és térfogatuk állandó. A részecskéik rezgő mozgást végeznek. Nagyobb hőmérsékleten intenzívebb lesz ez a mozgás.

A folyadékok alakja változó, de térfogata állandó, és nem sokban különbözik a szilárd anyagétól. A részecskék között kohéziós erők vagy más néven Van der Waals-féle erők hatnak. A részecskék úgy helyezkednek el, mint sok egymáson gördülő golyó. Érintkezéskor vonzzák, összenyomáskor pedig taszítják egymást.

A légnemű anyagok (gázok) alakja, és térfogata is változó. A részecskék kitöltik a rendelkezésre álló teret. A fallal, vagy egymással való ütközésig egyenes vonalú egyenletes mozgást végeznek. (lásd: kinetikus gázmodell; 6. tétel)

Gőznek nevezzük, mikor egy gáz nem az ideális gázokhoz hasonlóan viselkedik, mivel közel van a forrásponthoz, vagy a kritikus állapothoz.

Telített gőznek nevezzük, mikor egy zárt térben a folyadékból kilépő, és a lecsapódó részecskék száma megegyezik. Ha a két mennyiség nem azonos, akkor telítetlen gőz keletkezik. A telítettségi állapothoz meghatározott részecskeszám-sűrűség, és (telítési) nyomás tartozik.

Fizika érettségi vizsga tétel 2010 - Halmazállapot-változások, fajhőHa a telített gőzt magas hőmérsékletre hozzuk (az egyensúly megtartása mellett) egy idő után eléri a kritikus állapotot. Ekkor a gőz, és a folyadék közötti határ elmosódik, a kettő sűrűsége azonos lesz. Ebben az állapotban a légnemű anyagot gáznak nevezzük. A kritikus állapothoz kritikus hőmérséklet, és kritikus nyomás tartozik. Ezek az értékek anyagonként különböznek. A gázok a kritikus pont alatt gőzként viselkednek, azaz hűtés, és összenyomás esetén cseppfolyósodnak.

A vizek, és az élőlények párologtatnak, így a levegőben vízgőz található, melyet párának nevezünk. A páratartalom a levegőben lévő vízgőz értéke. A páratartalmat higrométerrel mérjük, melyek általában relatív páratartalmat mérnek. A relatív páratartalom azt adja meg, hogy a jelenlegi páratartalom hány százaléka a maximális (telített) páratartalomnak. A max. páratartalmat a hőmérséklet szabja meg.
Mennyiségek
Hőkapacitás
A testek közötti hőcsere egyenesen arányos a hőmérséklet-változással. A kettő hányadosa a hőkapacitás.
C = Q / T
Me.: J/K vagy J/°C

Fajhő
A testek hőkapacitása egynesen arányos a test tömegével, és függ az anyagi minőségtől. A kettő hányadosa a fajlagos hőkapacitás, vagyis a fajhő.
c = C / m
c = Q / m*T
Me.: J / kg*K vagy J / kg*°C

Molhő
C’ = Q / n*T
Halmazállapot változások

Fizika érettségi vizsga tétel 2010 - Halmazállapot-változások, fajhő Hőmérséklet, vagy nyomás emelkedésekor:
szilárdolvadásfolyékonypárolgásgáz
szilárdszublimációgáz
Hőmérséklet, vagy nyomás csökkenésekor:
gázlecsapódás vagy kondenzációfolyadékfagyásszilárd
gázkicsapódásszilárd

Felvett/leadott hőmennyiség:
Q = L(x) * m
L(x) az anyagra jellemző olvadáshő/fagyáshő vagy párolgáshő/forráshő.
Me.: J/kg vagy kJ/kg

Párolgás, mikor a legnagyobb energiájú részecskék a hőmozgás hatására megszűnt kohéziós erők miatt kiválnak a folyadékból. Minden hőmérsékleten létrejöhet. Függ a felülettől, a nyomástól, a hőmérséklettől, a páratartalomtól, és az anyagi minőségtől.

Szublimációnak nevezzük, mikor egy szilárd anyag párologtat, tehát az anyag kristályos szerkezetéből válnak ki részecskék.

A lecsapódás a párolgás ellentéte.

Forrás, olvadás, fagyás
Függ az anyagi minőségtől, és a külső nyomástól. Meghatározott hőmérsékleten megy végbe (olvadáspont-fagyáspont; forráspont). Az amorf testeknek nincs olvadás és fagyáspontjuk. Ezek nagy belső súrlódású folyadékok, amelyek fokozatosan válnak folyékonnyá (pl.: üveg, viasz).

Olvadás, és fagyás közben a test belső energiája nő, illetve csökken, tehát az I. főtétel alapján: E(b) =Q.

Párolgásnál a gáz belső energiája nő, míg a lecsapódásnál a folyadék belső energiája csökken. A folyamatok alatt nem elhanyagolható térfogatváltozás történik, ezért a külső nyomás munkájával is számolni kell: Q = E(b) - W.
Fázisátalakulások a természetben
Köd, harmat
A nappali melegebb időben a páratartalom nagyobb lehet, mint éjszaka, így éjszaka lecsapódik a pára egy része.

Dér, zúzmara
A dér a (télen) megfagyott harmat. A zúzmara a vízgőz közvetlen jéggé való lecsapódása.

Ónos eső, jégeső
A jégeső, mikor az eső hideg levegőn keresztül érkezik a talajra, így útközben megfagy. Az ónos eső a túlhűtött esőcseppek hirtelen megfagyásából jön létre. A fagyáshoz a földnek ütközés adja az energiát.

A természetes vízkörforgás egy körfolyamat, fázisátalakulás.

Fizika érettségi vizsga tétel 2010 - A termodinamika főtételei

    Fizika érettségi vizsga tétel 2010 - A termodinamika főtételei
  • A belső energia, a hőmennyiség, a térfogati munka fogalma.
  • Az I. főtétel és alkalmazásai hőtani folyamatokban.
  • A II. főtétel, mint a spontán folyamatok irányának meghatározása.
  • A II. főtétel, a hőerőgépek hatásfoka.
  • Perpetuum mobile.
  • Egyszerű termodinamikai gépek.

A belső energia a testeket alkotó részecskék hőmozgásából, és a részecskék közötti kölcsönhatásból származó energia. Ha T != 0 (nem nulla), akkor a test rendelkezik belső energiával. A termikus kölcsönhatás során a hidegebb test felmelegszik, és a belső energiája nő, míg a melegebb lehűl, és a belső energiája csökken. Egy test belső energiáját hőcserével, és mechanikai úton lehet megváltoztatni. A belső energiára is igaz az energia-megmaradás tétele, ezért:
∆E(b) = Q+W
Me.: J

Ez a képlet a hőtan első főtétele: a testek belső energiájának megváltozása egyenlő a testtel közölt hő, és a testen végzett mechanikai munka előjeles összegével.

Ahol a Q a hőmennyiség: két test között közvetlenül átadott energia mennyisége. Mivel energia, ezért mértékegysége joule [J] (W=F*s). Q=c*m*rT

Fizika érettségi vizsga tétel 2010 - A termodinamika főtételei border=Ha egy rendszerben – amelyben p nyomás uralkodik – bármilyen halmazállapotú anyagnak megnő a térfogata, a nyomás ellenében munkát kell végezni, vagy ha csökken a térfogata, akkor a külső nyomás végez munkát. Ezt a munkát nevezzük térfogati munkának. A belső energia általában térfogati munkává alakul át. Ilyet látunk például az autók motorjainak hengereiben.

Az első főtételből következik, hogy nem létezik elsőfajú perpetuum mobile, amely munkát végezne anélkül, hogy belső energiája ne csökkenne.

A mozgási energia a részecskék között, a rendezetlen mozgás, és az ütközések miatt, egyformán oszlik el. Ez az ekvipartíció tétele. Ezt a tételt először Boltzman fogalmazta meg.

A részecskék átlagos mozgási energiája:
ε = 3/2 * k*T

A részecskék átlagos forgási energiája:
ε = 1/2 * (forgástengely) * k*T

A részecskék átlagos teljes energiája:
ε = f/2 *k*T
ahol f a szabadsági fok.

Ebből adódóan:
E(b) = N*ε = N * f/2 *k*T = f/2 * p*V

Az első főtételt az ideális gázokra alkalmazva:
∆E(b) = Q – p * ∆V

II. főtétel:
A termikus kölcsönhatások során létrejött valóságos folyamatok mindig irreverzibilisek (megfordíthatatlanok). (Kelvin)

Vagy másként megfogalmazva a hőmérséklet mindig kiegyenlítődik, tehát külső beavatkozás nélkül nem kerülhet hő egy alacsonyabb hőmérsékletű helyről egy magasabb hőmérsékletű helyre. (Clausius)
Fizika érettségi vizsga tétel 2010 - A termodinamika főtételei border=

A tétel harmadik megfogalmazása szerint nincs olyan periodikusan működő hőerőgép, ami hőt von el, és azt teljes mértékben mechanikai munkává alakítja. Tehát nem készíthető másodfajú perpetuum mobile. (Max Planck)

A harmadik megfogalmazást könnyen beláthatjuk, hisz a hőmozgás rendezetlenségének mindig nőnie kell. A részecskék a folyamat során egyre rendezetlenebbül helyezkednek el. A rendezettségre bevezethetjük az entrópia fogalmát. Jele: S. S = Q/T Az entrópia tehát mindig növekszik a folyamat során, azaz az egyensúlyi állapotban lesz maximális (entrópiamaximum elve). Ez a spontán, valóságos folyamatokra igaz. Az idealizált, reverzibilis folyamatok entrópiája állandó marad.

Szintén a harmadikból következik, hogy a hőerőgépek hatásfoka nem érheti el a 100%-ot (vagy az 1-et). Körfolyamatoknál (hőerőgépek): η = ∑W / ∑Q(be). A második főtételből adódóan: η = T(2) - T(1) / T(1).

III. főtétel:
Az abszolút zérus pont (0K) nem érhető el.

A hőerőgépek hő befektetésével mechanikai munkát kapunk. Természetesen van némi hőveszteség is ( Q(le) ).

[[Ez a rész túl részletes]]
A hőerőgépek két nagy csoportja létezik: a gőzgépek és a gázgépek. Ezek hatásfoka (hasznos munka/összes munka) és működése is eltérő.

A gőzgépeken belül léteznek a dugattyús és a gőzturbinás gépek. A dugattyús gőzgépben egy kazánban termelődik a gőz, amely közvetlenül meghajt egy dugattyút. A dugattyú lendítőkereket hajt meg, ezáltal lesz a mozgás egyenletesebb. A fáradt gőz a dugattyú benyomott állapotakor távozik.

A gőzturbina hatásfoka már jobb (kb. 20%), mivel az energiát egyből forgómozgássá alakítja. A forró gőz egy turbinakereket mozgat, így egyenletesebb a munkavégzés, viszont csak egy irányba tud mozogni. Atomerőművekben is ezt alkalmazzák, mivel egyenletes teljesítménnyel kell meghajtani.

A gázgépek közé tartoznak a belső égésű motorok, a gázturbinák, a gázsugár-motorok és a rakétahajtóművek.
Legelterjedtebb fajtája a négyütemű Otto-motor, melyet az autókban is alkalmaznak. A négy ütem a következő:
1. Szívás: gázkeverék jut az égéstérbe a szívó-szelepen keresztül
2. Sűrítés: a gázkeverék összenyomódik
3. Munka: benzin motornál szikra, Diesel motornál a sűrítés által létrejött nyomás és a magas hőmérséklet robbanást okoz, ez mozgatja a dugattyút
4. Kipufogás: az égéstermék távozik a kipufogó szelepen keresztül
A négy ütem alatt a főtengely két teljes fordulatot tesz meg. Mivel csak az egyik ütemben van munkavégzés, ezért az egyenletes munkavégzés érdekében 4, 8, 12 hengeres motorokat alkalmaznak, ahol a munkaütemek egymás után jönnek. A benzinmotorok hatásfoka kb. 25-30%, míg a Diesel-motoroké 35-45%. Ráadásul az üzemanyag is olcsóbb a Diesel-motorba.

A kétütemű motorban a szelepek szerepét a dugattyú veszi át. Így tehát az ütemek a következők:
1. Szívás, sűrítés: a forgattyúházba a porlasztón keresztül gázkeverék jut, ugyanekkor az égéstérben sűrítődik a gázkeverék
2. Munka, kipufogás: a robbanás hatására a dugattyú lenyomódik, ami egyben a forgattyúházban lévő gázkeveréket az égéstérbe pumpálja, ezzel együtt az égéstermék a kipufogó nyíláson keresztül távozik az égéstérből.
A gázturbinás motorok működési elve hasonlít a gőzturbinához, csak itt nem gőz, hanem levegő és porlasztott üzemanyag hajtja a turbinát.
A gázsugaras és rakéta-meghajtású gépek is gázturbinás motort tartalmaznak, viszont az energia kis részét használják csak a turbina meghajtására. A nagy része gázsugár-fúvókán keresztül közvetlenül áramlik ki, és ezzel tolóerőt hoz létre. Az égéshez szükséges oxigént is magával kell vinnie a járműnek, így légritka térben is tud közlekedni.
 
Copyright © 2007- Érettségi vizsga tételek gyűjteménye. Designed by OddThemes | Distributed By Gooyaabi Templates